A-2

ON THE REACTIONS WITH KRYPTON DIFLUORIDE

Karel Lutar, Adolf Jesih and Boris Žemva*

'Jožef Stefan' Institute, 'Edvard Kardelj' University Ljubljana, 61000 Ljubljana (Yugoslavia)

Krypton difluoride is a more powerful oxidizing agent than elemental fluorine, in that the total bond energy of 96 kJ mole^{-1} , is less than that of molecular fluorine itself (155 kJ mole^{-1}). Using the combination of KrF_2 with the fluoride-ion donor solvent xenon hexafluoride, it should be possible to generate salts of novel oxidation-state transition-metal fluoro-anions.

With this aim, an investigation of the system $\mathrm{MF_x}\text{-}\mathrm{KrF_2}\text{-}\mathrm{XeF_6}$ with $\mathrm{MF_x}$ being $\mathrm{AgF_2}$, $\mathrm{NiF_2}$, $\mathrm{MnF_2}$, $\mathrm{HgF_2}$, $\mathrm{FeF_2}$, $\mathrm{PdF_3}$, $\mathrm{CrF_3}$ etc., was commenced. During this study some new xenon(VI) fluorometalates (e.g. $\mathrm{XeF_5}^+\mathrm{AgF_4}^-$, $(\mathrm{Xe_2F_{11}}^+)_2\mathrm{NiF_6}^{2-}$, $(\mathrm{XeF_5}^+)_2\mathrm{NiF_6}^{2-}$) were isolated and characterized, besides some already known xenon(VI) fluorometalates (e.g. $\mathrm{XeF_5}^+\mathrm{FeF_4}^-$, $(\mathrm{Xe_2F_{11}}^+)_2\mathrm{MnF_6}^{2-}$, $(\mathrm{XeF_5}^+)_2\mathrm{MnF_6}^{2-}$ etc.).

The advantages and disadvantages of the combination KrF_2 and XeF_6 for the generation of salts with the transition metal fluoroanion in a novel exidation state will be discussed.